NEC 液晶之友 电话: 020-33819057 Http://www.lcdfriends.com ## TFT COLOR LCD MODULE Type: NL10276BC30-21A 38cm (15.0 Type), XGA LVDS interface (1 port) ## **SPECIFICATIONS** (Second Edition) ## **PRELIMINARY** This document is preliminary. All information in this document is subject to change without prior notice. | NEC Corporation | | | | | | | | | | | |--------------------------------|----------------------------------|------------------|--|--|--|--|--|--|--|--| | Display Device Operations Unit | | | | | | | | | | | | Color LCD | Division | | | | | | | | | | | Application | Engineering Depar | tment | | | | | | | | | | Approved | W. Jalu | April 3,
2000 | | | | | | | | | | Checked | Checked 7 Kusanagi April 3, 2000 | | | | | | | | | | | Prepared | R. Lawashina | April 3,
2000 | | | | | | | | | No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors, which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are for use of "Standard" applications as specified below, and are not suitable for use of "Special" or "Specific" applications as specified below. NEC disclaims any responsibility or liability of any kind for any failure of equipment, personal injury or damage to property which may arise from the use of NEC devices for such "Special" applications. The devices listed in this documents should not be used for such "Specific" applications. Application examples recommended by NEC Corporation. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots. Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support). Specific: Military systems, aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, or any other equipment for which specifically high standard of quality or reliability is required. 3/26 ## **CONTENTS** | · | D 4 | |---|-----------| | 1. DESCRIPTION | P. 4 | | 2. FEATURES———————————————————————————————————— | P. 4 | | 3. APPLICATIONS — | P. 4 | | 4. STRUCTURE AND FUNCTIONS | ——— P. 4 | | 5. OUTLINE OF CHARACTERISTICS (at room temperature) | P. 5 | | 6. BLOCK DIAGRAM | P. 6 | | 7. GENERAL SPECIFICATIONS - | | | 8. ABSOLUTE MAXIMUM RATINGS | P. 7 | | 9. ELECTRICAL CHARACTERISTICS | P. 7 | | 10. POWER SUPPLY SEQUENCE | P. 9 | | 11. INTERFACE PIN CONNECTIONS | P. 10 | | 12. METHOD OF CONNECTION FOR LVDS chips ———————————————————————————————————— | P. 11 | | 13. DISPLAY COLORS VS INTPU DATA SIGNALS ———————————————————————————————————— | P. 12 | | 14. INPUT SIGNAL TIMINGS ———————————————————————————————————— | P. 13 | | 15. FOR LVDS RECEIVER | P. 18 | | 16. OPTICAL CHARACTERRISTICS | ——— P. 19 | | 17. RELIABILTY TEST — | P. 21 | | 18. GENERAL CAUTIONS | P. 22 | | 19. OUTLINE DRAWINGS | P. 24 | | 19.1 FRONT VIEW — | P. 24 | | 10 2 PEAR VIEW | P. 25 | #### 1. DESCRIPTION NL10276BC30-21A is a TFT (thin film transistor) active matrix color liquid crystal display(LCD) comprising amorphous silicon TFT attached to each signal electrode, a driving circuit and a backlight. NL10276BC30-21A has a built-in backlight. The 38cm(15.0 Type) diagonal display area contains 1024 × 768 pixels and can display 262,144 colors simultaneously. #### 2. FEATURES - Mounting structure of chassis holding - · LVDS interface (adapted KZ4E038D11, THine Electronics, Inc. as a receiver with timing controller) - Expanded screen size without increasing the frame area - High luminance (150 cd/m² at IL= 5.5mArms) - High contrast (150:1 Typ.) - Supply voltage: 3.3V - Incorporated edge type backlight (One lamp, Inverter-less) - Low reflection - Approved by UL1950 Third Edition and CSA-C22.2 No.950-95 #### 3. APPLICATION - Note PC #### 4. STRUCTURE AND FUNCTIONS A color TFT (thin film transistor) LCD module is comprised of a TFT liquid crystal panel structure, LSIs for driving the TFT array, and a backlight assembly. Sandwiching liquid crystal material in the narrow gap between a TFT array glass substrate and a color filter glass substrate creates the TFT panel structure. After the driver LSIs are connected to the panel, the backlight assembly is attached to the backside of the panel. RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells. Acting as an Electro-optical switch, each TFT cell regulates light transmission from the backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity. ## 5. OUTLINE OF CHARACTERISTICS (at room temperature) Display area 304.128 (H) × 228.096 (V)mm Drive system a-Si TFT active matrix Display colors 262,144 colors Number of pixels 1024×768 Pixel arrangement RGB vertical stripe Pixel pitch 0.297 (H) × 0.297 (V) mm Module size $315.5 (H) \times 240.0 (V) \times 6.7 (D) mm (Typ.)$ Weight 660 g (Typ.) Contrast ratio 150:1 (Typ.) Viewing angle (more than the contrast ratio of 10:1) · Horizontal: 50° (Typ., left side, right side) · Vertical: 2 20° (Typ., up side), 40° (Typ., down side) Designed viewing direction · Wider viewing angle without image reversal: down side (6 o'clock) • Optimum grayscale ($\gamma = 2.2$): Perpendicular · Best contrast angle: 5° (down side, 6 o'clock) Pencil hardness 3H (Min. ЛS K5400) Color gamut 40 % (Typ. At center, To NTSC) Response time 20 ms (Typ.), "white" to "black" (100%→10%) Luminance 150 cd/m^2 (Typ. at IL= 5.5 mArms) Signal system LVDS interface (Receiver: KZ4E038D11 THine Electronics, Inc. as a receiver) RGB 6-bit signals, Synchronous signals (Hsync, Vsync), and Dot clock (CLK) encoded with THC63LVDF63A(THine Electronics, Inc. are preferable. Supply voltage 3.3 V (for Logic and LCD driving) Backlight Edge light type: One cold cathode fluorescent lamp, Inverter-less Power consumption 4.9 W (Typ. at 150 cd/m²) ## 7. GENERAL SPECIFICATIONS | Items | Specifications | Unit | |-------------------|--|-------| | Module size | 315.5 ± 0.5 (H) × 240.0 ± 0.5 (V) × 6.7 ± 0.5 (D) | mm | | Display area | 304.128 (H) × 228.096 (V) [Diagonal display area: 38cm (Type: 15.0)] | mm | | Number of pixels | 1024 (H) × 768 (V) | pixel | | Dot pitch | 0.099 (H) × 0.297 (V) | mm | | Pixel pitch | 0.297 (H) × 0.297 (V) | mm | | Pixel arrangement | RGB (Red, Green, Blue) vertical stripe | _ | | Display colors | 262,144 (RGB 6-bit each) | color | | Weight | 660 (Typ.), 690 (Max.) | g | ## 8. ABSOLUTE MAXIMUM RATINGS | Parameters | Symbols | Ratings | Unit | Remarks | |-----------------------|---------|--|------|-----------------------| | Supply voltage | VCC | -0.3 to +4.0 | V | · | | Logic input voltage | VI | -0.3 to VCC+0.3 | V | Ta = 25℃ | | Lamp voltage | VL | 2000 | V | | | Storage temperature | Tst | -20 to +60 | C | - | | Operating temperature | Тор | 0 to +50 | °C | Module surface Note 1 | | Relative humidity | (RH) | ≤ 95 | % | Ta ≤ 40°C | | 1.0 | Note 2 | ≤ 85 | % | 40°C < Ta ≤ 50°C | | Absolute humid | | Absolute humidity shall not exceed Ta=50℃, RH=85%. | g/m³ | Ta>50℃ | Note 1: Measured at the display area (including self heat) Note 2: No condensation ## 9. ELECTRICAL CHARACTERISTICS ## (1) Logic/LCD driving Ta = 25℃ | Parameters | Symbols | Min. | Тур. | Max. | Unit | Remarks | |-------------------------------|---------|----------|---------------|---------------|------|------------------------------| | Supply voltage | VCC | 3.0 | 3.3 | 3.6 | v | | | Ripple voltage | VRP | | - | 100 | mV | for VCC | | LVDS signal input "L" voltage | ViL | -100 | _ | - | mV | VCM=1.2V
VCM: Common mode | | LVDS signal input "H" voltage | ViH | _ | - | +100 | mV | voltage in LVDS driver | | Terminating resistor | Rt | | 100 | | Ω | - | | Supply current | ICC | – | 320
Note 1 | 580
Note 2 | mA | _ | Note 1: Checker flag pattern (in EIAJ ED-2522) Note 2: 2H1V Checker flag pattern #### (2) Backlight | I | a | = | 25 | $^{\circ}$ | |---|---|---|----|------------| | | | | | | | Parameters | Parameters Symbols Min. Typ. Max. I | | Unit | Remarks | | | | | |----------------------|-------------------------------------|------|--------------|---------|-------|--|--|--| | Lamp current | IL | 2.0 | 5.5 | 6.0 | mArms | IL=5.5mArms:
150 cd/m ² Note 1 | | | | Lamp voltage | VL | _ | 690 | _ | Vrms | IL=5.5 mArms | | | | | | 1300 | - | _ | Vrms | Ta = 0°C Note 1 | | | | Lamp turn on voltage | VS | 950 | | | Vrms | Ta = 25℃ Note 1 | | | | Oscillator frequency | Ft | 40 | 60 | | kHz | Note 2 | | | Note 1: When VS and IL are less than Min. value, lamps are not turned on. Note 2: Recommended value of "Ft" • Ft is within the specification. th: Hsync period n: a natural number (1,2,3, · · · ·) • $$Ft = \frac{1}{4th} \times (2n-1)$$ If Ft is out of the recommended value, interface between Ft frequency and Hsync frequency may cause beat on the display. (3)Fuse This LCD module uses fuse as follows. | IMP DOD HIGGING - | | | | | |-------------------|------------|--------------------------|---------|---------| | Supply voltage | Part No. | Supplier | Ratings | Remarks | | VCC | KAB2402132 | MATSUO ELECTRIC Co., Ltd | 1.3A | - | Note 1: Before the power is designed, the fuses should be considered. The power capacity should be used more than 2.0 times of fuse rating. In case of small power capacity, the module should be evaluated enough. #### 10. POWER SUPPLY SEQUENCE *Signals: Hsync, Vsync, CLK, DE, R0-R5, G0-G5, B0-B5 Note 1: The supply voltage for input signals should be the same as VCC. Note 2: Turn on the backlight within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white. Note 3: When the power is off, keep whole signals (Hsync, Vsync, CLK, DE, R0-R5, G0-G5, B0-B5) low level or high impedance. Note 4: Wrong power sequence may damage to the module. Note 5: The signal should not be down during operation. Even if signal could recover, LCD module can not be operated correctly, the display may be un-uniformity. In case signal is down, VCC should be turned off, and then turn VCC and signal on as above sequence. #### 11. INTERFACE PIN CONNECTIONS (1) Interface connector for signal and power CN1 Part No. : FI-SEB20P-HF10 Adaptable socket : FI-SE20M-HF or FI-S20S Supplier : Japan Aviation Electronics Industry Limited (JAE) | Pin No. | Symbols | Signal type | Function | | | | | | |---------|---------|------------------|--------------------------------------|--|--|--|--|--| | 1 | VCC | Paula madu | Supply +3.3V | | | | | | | 2 | VCC | Power supply | Suppry 13.3 4 | | | | | | | 3 | GND | Ground | Note 1 | | | | | | | 4 | GND | | | | | | | | | 5 | D0- | Pixel data etc. | LVDS differential data input Notes 2 | | | | | | | 6 | D0+ | I IACI data ctc. | | | | | | | | 7 | GND | Ground | Note 1 | | | | | | | 8 | D1- | Pixel data etc. | LVDS differential data input Notes 2 | | | | | | | 9 | Dl+ | 1 IXCI data cic. | 1 | | | | | | | 10 | GND | Ground | Note 1 | | | | | | | 11 | D2- | Pixel data etc. | LVDS differential data input Notes 2 | | | | | | | 12 | D2+ | 1 IXCI data cic. | | | | | | | | 13 | GND | Ground | Note 1 | | | | | | | 14 | CK- |
 Pixel clock | CLK for pixel data f=65MHz (Typ.) | | | | | | | 15 | CK+ | I IACI CIOCK | (LVDS level) Notes 2 | | | | | | | 16 | GND | Ground | Note 1 | | | | | | | 17 | N.C. | Non-connection | | | | | | | | 18 | N.C. | 110H-00H00H00H | | | | | | | | 19 | GND | Ground | Note 1 | | | | | | | 20 | GND | Oround | 11000 | | | | | | Note 1: GND is signal ground for logic and LCD driving. GND is not connected to the FG (Frame ground) in the module. These grounds should be connected in customer equipment. Note 2: Use 100Ω twist pair wires for the cable Remark: Connect all terminals (except 17,18) to avoid noise issue. CN1:Figure from socket view 20 19 · · · · · 2 1 < Rear view > Connector insert direction V CN1 1 20 11/26 ## (2) Connector for backlight unit CN2 Part No. Adaptable socket : BHSR-02VS-1 : SM02B-BHSS-1 Supplier : J.S.T. TRADING COMPANY, LTD. | - 2uphii | <u> </u> | . 7.0.1. 110,002.0 | |----------|----------|---| | Pin No. | Symbols | Function | | 1 | VH | High voltage terminal (The cable color is pink) | | 2 | VL | Low voltage terminal (The cable color is black) | Note 1: VH and VL must be connected correctly. If you make a mistake to connect, you will get hurt and the module will break. #### 12. METHOD OF CONNECTION FOR LVDS chip Note 1: 100 Ω twist pair Note 2: These signals should be kept in the specified range of 14. INPUT SIGNAL TIMINGS. ## 13. DISPLAY COLORS vs INPUT DATA SIGNALS | Display colors | | | | Data signal(0: Low level, 1: High level) R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 | | | | | | | | | | | el) | | | | | |--------------------|--|----------------------------|----------------------------|---|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|-----------------------|----------------------------|----------------------------|----------------------------|-------------| | Display | colors | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | | | _ | | | _ | | | | Basic
colors | Black Blue Red Magenta Green Cyan Yellow | 0
0
1
1
0
0 | 0
0
1
1
0
0 | 0
0
1
1
0
0
1 | 0
0
1
1
0
0 | 0
0
1
1
0
0 | 0
0
1
1
0
0 | 0
0
0
0
1
1 | 0
0
0
0
1
1 | 0
0
0
0
1
1 | 0
0
0
0
1
1 | 0
0
0
0
1
1 | 0
0
0
0
1
1 | 0
1
0
1
0 | 0
1
0
1
0 | 0
1
0
1
0
1 | 0
1
0
1
0
1 | 0
1
0
1
0
1 | 01010 | | i | White | li | 1 | î | i | i | î | Ιî | ī | î | ī | ī | î | ĺ | ī | ĺ | 1 | 1 | 1 | | Red | Black dark | 0 0 0 | 0 0 | 0 0 0 | 0 0 0 | 0
0
1 | 0
1
0 | 0 0 | 0 0 | 0 0 | 0 0 0 | 0 0 0 | 0 0 | 0
0
0 | 0 0 | 0 | 0 0 | 0 0 | 000 | | grayscale | ↓
bright
Red | 1
1
1 | 1
1
1 | 1
1
1 | :
1
1
1 | 0
1
1 | 1
0
1 | 0
0
0 | 0 0 | 0 0 0 | 0 0 | 0 | 0
0
0 | 0
0
0 | 0 0 | 0 0 0 | 000 | 0 0 0 | 0
0
0 | | Green
grayscale | Black dark the second secon | 000 0 | 000 | 000 | 000::0 | 000 0 | 000 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 1 | 0 1 0 | 0 0 0 | 000 | 0 0 0 | 000 | 000 | 0 000 | | | bright
Green | 0 0 | 0 | 0 | ŏ | 0 | 0 | 1 1 | 1 | 1
1 | 1
1 | 1
1 | 0
1 | 0 | 0 | 0 | 0 | 0 | 0 | | Blue
grayscale | Black dark | 000 | 0 0 | 0 0 | 0 0 0 | 0 | 0 0 | 0 0 | 0 | 0 0 0 | 0 0 0 | 0 | 0
0
0 | 0 0 | 0 0 0 | 0 0 | 000 | 0
0
1 | 0 1 0 | | grayscate | bright
Blue | 000 | 0
0
0 | 000 | 000 | 0 0 0 | 000 | 0 0 | 0
0
0 | 0 0 0 | 000 | 0
0
0 | 000 | 1
1
1 | 1 · 1 · 1 | 1
1
1 | 1
1
1 | 0
1
1 | 1
0
1 | Note 1: Colors are developed in combination with 6-bit signals (64 steps in grayscale) of each primary red, green, and blue color. This process can result in up to 262,144 (64 × 64 × 64) colors. 13/26 #### 14. INPUT SIGNAL TIMINGS (1) Input signal specification for LCD controller | (-/ | put signal specification to
Parameters | Symbols | Min. | Тур. | Max. | Unit | Remarks | | |----------|---|----------|----------|-------------|------|------|-------------------|--| | CLK | Frequency | 1/tc | 60.0 | 65.0 | 67.0 | MHz | 15.384ns (Typ.) | | | U | Duty | tch/tc | Note 1 | | | | _ | | | | Rise, fall | terf | | | | ns | | | | Hsync | | ., | | 20.676 | | μs | 48.363kHz (Typ.) | | | | Period | th | _ | 1344 | | CLK | 10.505K122 (1)p.) | | | | Display period | thd | | 1024 | | CLK | | | | | Front-porch | thf * | 1 | 40 | | CLK | | | | | Pulse width | thp * | 2 | 208 | - | CLK | | | | | Back-porch | thb * | 1 | 72 | _ | CLK | _ | | | ٠ | | hp + thb | 81 | 320 | 1023 | CLK | | | | - | Hsync-CLK timing | ths | | | | ns | | | | | CLK-Hsync timing | thh | | Note 1 | | ns | _ | | | | Rise, fall | thrf | | | | ns | | | | Vsync | | | | 16.666 | | ms | 60.004Hz (Typ.) | | | | Period | tv | <u>-</u> | 806 | | H | | | | | Display period | tvd | | 768 | | H | | | | | Front-porch | tvf * | 1 | 3 | | H | | | | | Pulse width | tvp * | 2 | | | H | | | | | Back-porch | tvb * | .1 | 33 | | H | <u> </u> | | | | | vp + tvb | 4 | 38 | | Н | | | | | Vsync-Hsync timing | tvs | | | | ns | j | | | | Hsync-Vsync timing | tvh | | Note 1 | | CLK | _ | | | | Rise, fall | tvrf | | | | ns | | | | DATA | DATA-CLK (Set up) | tds | | | | ns | | | | | CLK-DATA (Hold) | tdh | | | | ns | | | | DE | DE-CLK timing | tes | | Note 1 | ns | _ | | | | | CLK-DE timing | teh | | | | ns | | | | | Rise, fall | terf | | | | ns | | | Note 1: These values are specified at the inputs of THC63LVDF63A. (Refer to 12. METHOD OF CONNECTION FOR LVDS chip) 17/26 ## (4) Display position of input data | | | | T | | | |-----------|-----------|-----|-----------|-----|-------------| | D(0, 0) | D(1, 0) | ••• | D(X, 0) | ••• | D(1023, 0) | | D(1, 0) | D(1, 1) | ••• | D(X, 1) | | D(1023, 1) | | • | • | • | • | • | • | | I . | | *** | • | ••• | | | | • | • | • | • | • | | D(0, Y) | D(1, Y) | ••• | D(X, Y) | | D(1023, Y) | | • | • | • | • • | • | • | | | • | ••• | • | ••• | • | | • | • | • | • | • | • | | D(0,767) | D(1,767) | *** | D(X,767) | ••• | D(1023,767) | ## 15. FOR LVDS RECEIVER ## (1) Input signal specifications (It is prescribed in the part CN1 input) | Parameters | Symbols | Min. | Тур. | Max. | Unit | Remarks | |---------------|---------|------------|--------|------------|------|--------------| | CLK Frequency | tCK | 14.71 | 15.38 | 16.66 | ns | | | Bit0 position | tb0 | -0.5 | 0 | 0.5 | ns | tck= 15.38ns | | Bit1 position | tb1 | tck/7-0.5 | 1/7tck | tck/7+0.5 | ns | tck= 15.38ns | | Bit2 position | tb2 | 2tck/7-0.5 | 2/7tck | 2tck/7+0.5 | ns | tck= 15.38ns | | Bit3 position | tb3 | 3tck/7-0.5 | 3/7tck | 3tck/7+0.5 | ns | tck= 15.38ns | | Bit4 position | tb4 | 4tck/7-0.5 | 4/7tck | 4tck/7+0.5 | ns | tck= 15.38ns | | Bit5 position | tb5 | 5tck/7-0.5 | 5/7tck | 5tck/7+0.5 | ns | tck= 15.38ns | | Bit6 position | tb6 | 6tck/7-0.5 | 6/7tck | 6tck/7+0.5 | ns _ | tck= 15.38ns | Note 1: See the specifications of LVDS manufactures for detailed design. In case that CLK jitter value between current cycle and next cycle is big, skew time of the next cycle decreases with the value of the jitter. CLK jitter+LVDS output skew + cable skew ≤ 500ps e. q. LVDS output skew: $\pm 200 \text{ps}$ acceptable CLK jitter $\pm 200 \text{ps}$ (500-(200+100) = 200 ps) Cable skew: $\pm 100 \text{ps}$ ## (2) Input signal timing chart #### 16. OPTICAL CHARACTERISTICS $(Ta = 25^{\circ}C, VCC = 3.3V, IL = 5.5 \text{ mArms})$ | Items | Symbols | Condition | | Min. | Тур. | Max. | Unit | Remarks | |-------------------------|---------|---|------|------|------|------|-------------------|---------| | Contrast ratio | CR | θR=0°, θL=0°, θU=0°,θD=0°
White / Black, at center | | 80 | 150 | _ | _ | Note 1 | | Luminance | Lvmax | White, at center | | 120 | 150 | _ | cd/m ² | Note 2 | | Luminance
uniformity | | White | | | _ | 1.25 | _ | Note 3 | | Chromaticity | | 777 ' | x | 0.30 | 0.33 | 0.36 | | Note 2 | | coordinate Wb | | White (x,y) , at center y | 0.32 | 0.35 | 0.38 | | 140f¢ 7 | | #### Reference data $(Ta = 25^{\circ}C, VCC = 3.3V, IL = 5.5 \text{ mArms})$ | | | | (14 - 23 | 0, 100 | ,, __ | | · | |---------------------|------------|--|-----------|--------|-----------------|------|---------| | Items | Symbols | Condition | Min. | Тур. | Max. | Unit | Remarks | | Contrast ratio | CR | Best contrast angle
θR=0°, θL=0°, θD=5°
White Black, at center | _ | 300 | - | - | - | | | θ R | $CR > 10$, $\theta U=0^{\circ}$, $\theta D=0^{\circ}$ | 30 | 50 | _ | deg. | | | Viewing angle range | θL | White / Black, at center | 30 | 50 | _ | deg. | Note 4 | | (CR > 10) | θU | CR > 10, 0R=0°, 0L=0° | 10 | 20 | _ | deg. | 14016 4 | | , , | θ D | White / Black, at center | 30 | 40 | - | deg. | | | Color gamut | С | θR=0°, θL=0°,θU=0°, θD=0°
at center, to NTSC | 35 | 40 | 1 | % | | | | Ton | White to Black | _ | 20 | 40 | | Note 5 | | Response time | Toff | Black to White | _ | 50 | 70 | ms | Note 5 | Note 1: The contrast ratio is calculated by using the following formula. Contrast ratio (CR) = Luminance with all pixels in "white" Luminance with all pixels in "black" Note 2: The luminance is measured after 20 minutes from the module works, with all pixels in "white". The typical value is measured after luminance saturation, more than one hour after burn-in. Note 3: Luminance uniformity is calculated by using the following formula. The luminance is measured at near the five points shown below. Note 4: Definitions of viewing angle are as follows. Note 5: Definitions of response time is as follows. Photo-detector output signal is measured when the luminance changes "white" to "black" or "black" to "white". ## 17. RELIABILITY TEST | Test items | Test condition | Judgment | |-------------------------------------|--|------------| | High temperature/humidity operation | 50±2°C, RH= 85% | * 1 | | | 240 hours, Display data is white. | | | Heat cycle (operation) | ① 0℃±3℃···1 hour | *1 | | | 55℃±3℃···1 hour | | | | ② 50 cycles, 4 hours/cycle | | | | 3 Display data is white. | | | Thermal shock | ① -20℃±3℃···30 minutes | *1 | | (non-operation) | 60°C±3°C···30 minutes | | | • | ② 100 cycles | | | | 3 Temperature transition time is within 5 minutes. | | | Vibration (non-operation) | ① 5-100Hz, 19.6m/s ² (2G) | *1, *2 | | • | 1 minute/cycle, | | | | X,Y,Z direction | | | . * | 2 120 times each direction | | | Mechanical shock | ① 539m/s ² (55G), 11ms | *1, *2 | | (non-operation) | X,Y,Z direction | | | ` - | 2 5 times each direction | | | ESD (operation) | 150pF, 150 Ω , \pm 10KV | *1 | | | 9 places on a panel *3 | 1 | | | 10 times each place at one-second intervals | | | Dust (operation) | 15 kinds of dust (JIS-Z 8901) | *1 | | | Hourly 15 seconds stir, 8 times repeat | | - *1: Display function is checked by the same condition as LCD module out-going inspection. - *2: Physical damage - *3: Discharge points are shown in the figure. #### 18. GENERAL CAUTIONS Because next figures and sentences are very important, please understand these contents as follows. ## **CAUTION** This figure is a mark that you will get hurt and/or the module will have damages when you make a mistake to operate. This figure is a mark that you will get hurt when you make a mistake to operate. #### CAUTIONS - (1) A caution when taking out the module - ① Pick a pouch only, when taking out the module from the carrier box. - (2) Cautions for handling the module - ① As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges. Peel protection sheet out from the LCD panel surface as slowly as possible. - As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided. - 3 As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning. - 4 Do not pull the interface connectors in or out while the LCD module is operating. - (5) Put the module display side down on a flat horizontal plane. - 6 Handle connectors and cables with care. - When the module is operating, do not lose CLK, Hsync, or Vsync signal. If any one or more of these signals is lost, the LCD panel would be damaged. - The pressure for mounting should never exceed TBD. - The LCD module should be mounted in strong body such as magnesium alloy. If the press or twist are added to the module, the display may have un-uniformity image. When the module is mounted to customer chassis, please evaluate the display condition carefully. - Be careful not to touch the sheet at the time of handling because only a thin transparency seat is put on the printed circuit board. - A thin transparency sheet on the printed circuit board. #### (3) Cautions for the atmosphere - ① Dew drop atmosphere must be avoided. - ② Do not store and/or operate the LCD module in high temperature and/or high humidity atmosphere. Storage in an Electro-conductive polymer-packing pouch and in relatively low temperature atmosphere is recommended. - 3 This module uses cold cathode fluorescent lamp. Therefore, The lifetime of lamp becomes short conspicuously at low temperature. - ④ Do not operate the LCD module in high magnetic field. 23/26 (4) Caution for the module characteristics ① Do not any apply fixed patterns data signals to the LCD module at product aging. Applying fixed pattern for a long time may cause image sticking. ### (5) Other cautions - ① Do not disassemble and/or reassemble LCD module. - ② Do not readjust variable resistors nor switches etc. - When returning the module for repair or etc., pack the module not to be broken. We recommend the original shipping packages. Liquid Crystal Display has the following specific characteristics. These are not defects nor malfunctions. The ambient temperature may affect the display condition of the LCD module. The LCD module uses cold cathode tube for backlight. Optical characteristics, like luminance or uniformity, will change during time. Uneven brightness and/or small spots may be noticed depending on different display patterns. NEC Corporation | | Rev | vision History | | | DO | D·H·7825 | 26/26 | |------|------------------|--|--------------|----------|---------|--------------|----------------| | Rev. | Prepared
date | Revision contents | Approved | <u> </u> | ecked | Prepared | Issued
date | | 1 | Mar. 24,
2000 | DOD-H-7797 | H. Tachimoto | | | R. Kawashima | - | | 2 | April 3,
2000 | DOD-H-7825 P4 Feature is added. P4 Application is corrected. P22 (2)® is corrected. P24,25 Note 1 is corrected. P25 Holding positions are added. | 71. Jahr | 7.K | usanagi | R. Xawashima | - | | | | | | | | | | | | | | : | | | | | | | | | | | | | | | | | | · | | ta a | | | | | | | | | | : | · | | | • | · | |